• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Research on PDEs for fluids in terms of numerical and mathematical analysis

Research Project

  • PDF
Project/Area Number 17K14230
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Foundations of mathematics/Applied mathematics
Research InstitutionThe University of Tokyo

Principal Investigator

Kashiwabara Takahito  東京大学, 大学院数理科学研究科, 准教授 (80771477)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywords有限要素法 / Navier-Stokes方程式 / 領域摂動 / Primitive方程式 / 最大正則性 / Stokes-Darcy問題 / 不連続Galerkin法 / Euler方程式
Outline of Final Research Achievements

We studied partial differential equations describing the motion of fluids in terms of mathematical and numerical analysis. From the viewpoint of mathematics, we considered the primitive equations which are known as fundamental equations for atmosphere and ocean. We proved that there exists a good solution to the primitive equations and explained their relation with the Navier-Stokes equations, which are more fundamental in the context of fluid dynamics.
From the viewpoint of numerics, we considered the finite element method, which is one of the numerical methods to solve PDEs. We justified its use in domains with a smooth and curved boundary.

Free Research Field

微分方程式の数値解析

Academic Significance and Societal Importance of the Research Achievements

流体の数値シミュレーションにおいては、数値計算手法の急速な発展に比べて、数学的議論を用いた正当化が追いついていない面がある。本研究課題で得られた成果は、数学解析と数値解析の両面からアプローチを行い、欠落している数学的正当化を確立することを試みたものである。経験則で確認するという側面が強かった数値シミュレーションの妥当性を数学理論の面からもサポートし、流体数理の発展に寄与することが期待される。

URL: 

Published: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi