• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2019 Fiscal Year Final Research Report

Development of novel biomarker from electroencephalography data for by machine learning approach

Research Project

  • PDF
Project/Area Number 17K16365
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Psychiatric science
Research InstitutionThe University of Tokyo

Principal Investigator

Tokuda Keita  東京大学, 医学部附属病院, 助教 (50762176)

Project Period (FY) 2017-04-01 – 2020-03-31
Keywords脳波 / バイオマーカー / 精神疾患 / 非線形時系列解析
Outline of Final Research Achievements

The aim of the project was to characterize the disease state of psychosis using electroencephalogram recordings (EEG). During this project, we developed a novel mathematical method combining the machine learning techniques such as the deeplearning and the nonlinear time series analysis. We succeeded in developing a system that is able to classify subjects from the EEG recording data, by training the system with the psychiatrists’ diagnosis labels as the training data. The developed method should be applicable to various time series data recorded from the central nervous system other than EEG data.

Free Research Field

計算論的神経科学

Academic Significance and Societal Importance of the Research Achievements

高精度の診断・治療効果の評価、病態進行の個別予想、脳波を用いたバイオフィードバックなどによる治療法の開発、疾患動物モデルの開発・評価による創薬の効率化、疾患の基礎的な神経生理学的・病理学的な理解などの実現に貢献し得ると考えられる。

URL: 

Published: 2021-02-19   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi