2020 Fiscal Year Final Research Report
Development of novel data systems for the health promotion of people on welfare in Japan
Project/Area Number |
17K19793
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Research Field |
Society medicine, Nursing, and related fields
|
Research Institution | Kyoto University (2020) The University of Tokyo (2017-2019) |
Principal Investigator |
KONDO NAOKI 京都大学, 医学研究科, 教授 (20345705)
|
Project Period (FY) |
2017-06-30 – 2021-03-31
|
Keywords | 健康格差 / 機械学習 / マーケティング / 社会疫学 / 生活保護 / 健康の社会的決定要因 / 行動科学 |
Outline of Final Research Achievements |
Economic deprivation makes health care difficult. Therefore, we have built a support system that applies marketing techniques for them. Using a database of welfare recipients, we developed a population segmentation algorithm for providing appropriate care to welfare recipients based on information such as the background that led to welfare, adult and life history, and health literacy. We obtained welfare management data and medical insurance receipts to segment the recipients and implemented them in the system. The relationships between the risk of chronic diseases for children, adults, and older adults and the social status (isolation, non-working, etc.) of welfare recipients was evaluated. We developed and published a tool for screening needy and isolated people with easy-to-ask questions.
|
Free Research Field |
社会疫学・公衆衛生学
|
Academic Significance and Societal Importance of the Research Achievements |
R3年度から開始された生活保護の被保護者健康管理支援事業等、社会的な課題を踏まえた健康管理支援を広く普及するための実際のシステム構築を達成した。本研究は複数の科研プロジェクトに引き継がれ、さらなるシステムのアップデートと、そのデータを用いた実証分析へと拡張している。機械学習アルゴリズムを生活保護制度に関するビッグデータに活用して福祉を推進するための学術と社会の橋渡し研究として社会的意義は大きいと考える。
|