2022 Fiscal Year Final Research Report
Thermal response and visible light photocatalytic reactivity of He induced nanostructure tungsten
Project/Area Number |
17KK0132
|
Research Category |
Fund for the Promotion of Joint International Research (Fostering Joint International Research)
|
Allocation Type | Multi-year Fund |
Research Field |
Nuclear fusion studies
|
Research Institution | The University of Tokyo (2021-2022) Nagoya University (2017-2020) |
Principal Investigator |
Kajita Shin 東京大学, 大学院新領域創成科学研究科, 教授 (00455297)
|
Project Period (FY) |
2018 – 2022
|
Keywords | プラズマ / ヘリウム / ファズ / 光電気化学 / ニューラルネットワーク |
Outline of Final Research Achievements |
Experiments were conducted using the linear device MAGNUM-PSI to irradiate tungsten with helium and deposit tungsten at the same time. While fuzz growth was suppressed when copper and molybdenum were deposited, a fuzz layer as thick as 7 μm was formed when a tungsten sputtering source was placed near the sample, suggesting that the fuzz growth rate was significantly accelerated by the tungsten deposition. In addition, the relationship between ne and Te from laser Thomson scattering and OES data in Magnum-PSI was modeled using a neural network to evaluate the error in temperature and density measurements, and it was found that the measurement error was about 10%.
|
Free Research Field |
プラズマ,核融合
|
Academic Significance and Societal Importance of the Research Achievements |
今後,この方法は,レーザートムソン散乱が利用できない場合においてもneとTeの測定領域を拡張することが可能である。例えば,より高速な検出器を用いれば,レーザーパルス周波数(現時点では10 Hz)で決まるトムソン散乱よりも高い時間分解能が得られ,ハイパースペクトル画像と組み合わせることで二次元計測も可能になる。さらに,機械学習を用いた研究を進めることで,衝突輻射モデルで得られた分布からのずれを引き起こす過程を発見できる可能性がある。本手法は大型装置においても分光計測のデータを用いて高い精度で電子温度や密度を計測できる可能性があり,トムソン散乱などに比べて極めて安価な手法となる。
|