2009 Fiscal Year Final Research Report
Ramification in arithmetic geometry
Project/Area Number |
18340002
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | The University of Tokyo |
Principal Investigator |
SAITO Takeshi The University of Tokyo, 大学院・数理科学研究科, 教授 (70201506)
|
Co-Investigator(Kenkyū-buntansha) |
KATO Kazuya 京都大学, 大学院・理学研究科, 教授 (90111450)
SAITO Shuji 東京大学, 大学院・数理科学研究科, 教授 (50153804)
TERASOMA Tomohide 東京大学, 大学院・数理科学研究科, 教授 (50192654)
TSUJI Takeshi 東京大学, 大学院・数理科学研究科, 准教授 (40252530)
SHIHO Atsushi 東京大学, 大学院・数理科学研究科, 准教授 (30292204)
|
Project Period (FY) |
2006 – 2009
|
Keywords | 数論幾何学 |
Research Abstract |
I studied the structure of graded quotients of the filtration by ramification groups of the absolute Galois group of a local field. Using this, I defined the characteristic variety of an l-adic sheaf under some condition and computed the characteristic class as the intersection product with the 0-section. For an arbitrary constructible sheaf on a variety over a local field, I defined the Swan class and proved a formula of Riemann-Roch type formula in a relative version. I computed explicitly as an induced representation the local Fourier transform of an l-adic representation of the absolute Galois group of a local field of positive characteristic, under a certain assumption. For the p-adic Galois representation associated to a Hilbert modular form, I published a paper establishing the compatibility with the local Langlands correspondence at a prime dividing p in the sense of p-adic Hodge theory
|
Research Products
(44 results)
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
[Presentation] Representation theory2007
Author(s)
Tomohide Terasoma, Beilison regulator, bar complex for Deligne cohomology
Organizer
System of differential equations and related topics, PRIMA
Place of Presentation
北海道大学
Year and Date
20070000
-
-
-
-
-
-
-
-
-
-
-
-