• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

The analytic theory of arithmetic L-functions and multiple zeta-functions

Research Project

  • PDF
Project/Area Number 18H01111
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionNagoya University

Principal Investigator

Matsumoto Kohji  名古屋大学, 多元数理科学研究科, 教授 (60192754)

Co-Investigator(Kenkyū-buntansha) 見正 秀彦  東京電機大学, システムデザイン工学部, 教授 (10435456)
鈴木 正俊  東京工業大学, 理学院, 准教授 (30534052)
小森 靖  立教大学, 理学部, 教授 (80343200)
Project Period (FY) 2018-04-01 – 2022-03-31
Keywordsゼータ関数 / L 関数 / 多重ゼータ関数 / 値分布 / ルート系 / 普遍性
Outline of Final Research Achievements

We studied mainly analytic aspects of zeta-functions, L-functions and multiple zeta-functions which are quite important in number theory. As for the value-distribution of zeta-functions, we used the techniques of probability theory and function-space theory to obtain new type of limit theorems and universality theorems, and further, considered connections with Dirichlet series attached to Goldbach's problem. On multiple zeta-functions, we also based on the aspects of representation theory and combinatorics to find connections between Schur multiple zeta-functions and zeta-functions of root systems.

Free Research Field

数学(整数論)

Academic Significance and Societal Importance of the Research Achievements

ゼータ関数、多重ゼータ関数の研究は今も世界中で極めて活発に行われており、特に解析学や表現論などの幅広い枠組みでの研究は新しい研究方向を切り開く可能性が高いと考えられる。純理論的な数学の研究なので、直接的な社会へのフィードバックはすぐには見出せないが、学術の活性化を通じて社会の高度化にも生かされることになるはずだと考える。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi