2020 Fiscal Year Final Research Report
Study on THz Spectroscopy Using MEMS Chiral Metamaterial
Project/Area Number |
18H01843
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Review Section |
Basic Section 28050:Nano/micro-systems-related
|
Research Institution | The University of Electro-Communications |
Principal Investigator |
Kan Tetsuo 電気通信大学, 大学院情報理工学研究科, 准教授 (30504815)
|
Co-Investigator(Kenkyū-buntansha) |
小西 邦昭 東京大学, 大学院理学系研究科(理学部), 助教 (60543072)
神田 夏輝 東京大学, 物性研究所, 助教 (60631778)
岩瀬 英治 早稲田大学, 理工学術院, 教授 (70436559)
高橋 英俊 慶應義塾大学, 理工学部(矢上), 講師 (90625485)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Keywords | MEMS / キラルメタマテリアル / THz |
Outline of Final Research Achievements |
To realize vibrational circularly polarized light dichromatic spectroscopy in the THz frequency band, a MEMS tunable metamaterial was formed with a three-dimensional chiral optical resonator structure that resonates strongly with circularly polarized light. In order to achieve the goal, the MEMS tunable metamaterial needs to be deformed significantly, so we focused on the generation of a stable large deformation method, which has been a problem in the past. In order to realize a stable large deformation method, we focused on the elimination of instability from the deformation method and the excellent deformation characteristics of silicon, and came up with a driving method that mechanically pulls up the helical structure fabricated on a silicon substrate. We designed and fabricated a structure that enables large deformation, verified the amount and shape of deformation by the mechanical driving method, and clarified the response of the fabricated structure by calculation.
|
Free Research Field |
MEMS
|
Academic Significance and Societal Importance of the Research Achievements |
THz周波数帯は、近年大きな注目を集めている電磁波の周波数帯である。THz周波数帯には多くの分子の振動吸収が存在するが、とくに左右円偏光に対する吸収特性の差である振動円偏光二色性スペクトル(VCD)は、ヘリックス構造など分子構造のキラル構造の情報をもたらすことが知られている。したがって、THz周波数帯において、物質の振動円偏光二色スペクトル計測技術が確立すれば、THz光の長い波長を生かして、タンパク質など大型の3次元分子構造を、結晶化せずに計測できることが期待される。本研究は、これまで微弱であり計測が難しかったTHz VCDの信号増強を行う素子の作製であり、優れた分光方法の確立に貢献する。
|