• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Sensitivity analysis for publication bias in multivariate meta-analysis

Research Project

  • PDF
Project/Area Number 18H03208
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 60030:Statistical science-related
Research InstitutionOsaka University

Principal Investigator

Hattori Satoshi  大阪大学, 大学院医学系研究科, 教授 (50425154)

Co-Investigator(Kenkyū-buntansha) 小向 翔  大阪大学, 大学院医学系研究科, 助教 (70794543)
逸見 昌之  統計数理研究所, 数理・推論研究系, 准教授 (80465921)
Project Period (FY) 2018-04-01 – 2022-03-31
Keywordsメタアナリシス / 公表バイアス / 選択モデル / 感度解析
Outline of Final Research Achievements

Meta-analysis is a statistical method to synthesize published research findings and plays very important roles in creating clinical guidelines. Meta-analysis is usually conducted with published results in scientific journals. Then, good results are likely included in the analysis and it leads bias, called the publication bias. In the standard meta-analysis for randomized clinical trials, lots of methods for publication bias have been established. On the other hand, very limited development has been made for multivariate meta-analysis such as the network meta-analysis and meta-analysis of diagnosis or prognosis studies. In this research, several parametric sensitivity analysis methods for publication bias in the multivariate meta-analysis were developed.

Free Research Field

医学統計学

Academic Significance and Societal Importance of the Research Achievements

多変量メタアナリシス、特に、ネットワークメタアナリシスの適用例は近年劇的に増加しており、伝統的な方法では見出すことのできなかった知見が多く生み出されています。しかしながら、公表バイアスに対処する方法はほとんど開発されてきておらず、果たして、メタアナリシスによる結果が十分に説得力があり安定したものであるかについての危惧が常に残る状態でした。本研究では多変量メタアナリシスに適用可能な公表バイアスの影響を定量化する方法を与えています。多変量メタアナリシスの結果の妥当性を考察することができ、臨床医学研究への大きなインパクトが期待されます。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi