2022 Fiscal Year Final Research Report
Study on moduli spaces of algebraic sheaves
Project/Area Number |
18K03246
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11010:Algebra-related
|
Research Institution | Kumamoto University |
Principal Investigator |
Abe Takeshi 熊本大学, 大学院先端科学研究部(理), 准教授 (90362409)
|
Project Period (FY) |
2018-04-01 – 2023-03-31
|
Keywords | ベクトル束 / モジュライ |
Outline of Final Research Achievements |
It is fundamental to study line bundles in the study of algebraic varieties. As a higher rank version, vector bundles are also basic object to study. There is a phenomena called strange duality which concerns generalized theta divisors on the moduli spaces of vector bundles. In this research, we obtain the following result : a partial result on the strange duality of holomorphic triples on a curve; a representation of height zero moduli spaces of algebraic sheaves on a del Pezzo surface of degree 5 or 6 as a quiver representation; a result on subvarieties of geometric genus zero in a general hypersuface in a projective space.
|
Free Research Field |
代数幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
数学の研究では「双対性」(「そうついせい」と読む)が様々な状況で登場する.双対性とは,大体次のようなものである.今Aという対象があり,それを鏡に映すと,Aとそっくりな,しかしAとは異なるBという像が見える.鏡の中の世界から見ると,Bという対象の像としてAが見えるであろう.双対性とはこの例のような二つの対象AとBの組の間の関係性のことである.数学の研究において様々な双対性の発見は数学的対象の間に明快な関係を与えるという意味でとても意義深いことである本研究で取り組んだstrange dualityもそのような双対性の一つである.
|