• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Study of group actions on manifolds by psedo-inverse limit systems of equivariant framed maps

Research Project

  • PDF
Project/Area Number 18K03278
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionOkayama University

Principal Investigator

MORIMOTO Masaharu  岡山大学, 自然科学研究科, 特命教授 (30166441)

Co-Investigator(Kenkyū-buntansha) 早坂 太  岡山大学, 環境生命科学研究科, 准教授 (20409460)
Project Period (FY) 2018-04-01 – 2023-03-31
Keywords多様体上の群作用 / 枠付き同変写像 / 同変手術 / 球面上の群作用
Outline of Final Research Achievements

Let G be a finite group, A a set of subgroups of G, and B the set of subgroups not belonging to A. We say that a G-action on Z is B-free if the L-fixed-point set of Z coincides with the G-fixed-point set of Z. We consider pseudo-inverse-limit systems F_M : W_M -> Ix Y, where M runs over A, between a G-map f : X -> Y and id : Y -> Y. Choosing a suitalbe pseudo-inverse-limit system and performing G-surgeries, we would discover new G-actions on the underlying manifold of Y. Studying this problem, we could determine the dimension of spheres S with B-free G-action such that S has exactly one G-fixed point for groups: Alternating Groups A_5, A_6 (degree 5, 6), Symmetric Group S_5 (degree 5), Double Covering Groups SL(2, 5) of A_5 and TL(2, 5) of S_5, and etc.

Free Research Field

微分位相幾何学

Academic Significance and Societal Importance of the Research Achievements

有限群 G が多様体 X, Y に作用している状況で,G-写像 f : X -> Y を同変手術により微分同相写像にホモトピックな f' : X' -> Y に変形する問題は難しい問題である.特に,ある部分群 H に対し X のH-不動点集合の次元が 3, 4 となる場合には極めて難しいい問題である.本課題研究では f と恒等写像 id の間の枠付きM-コボルディズム F_M : W_M -> I x Y(M を A 上で動かす)の擬逆極限系をうまく選んでこの困難さを克服する研究を行い,うまい選択方法を得ることができた.ここに学術的意義がある.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi