• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Research of submanifolds in symmetric spaces and their time evolution along various curvature flows

Research Project

  • PDF
Project/Area Number 18K03311
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionTokyo University of Science

Principal Investigator

Koike Naoyuki  東京理科大学, 理学部第一部数学科, 教授 (00281410)

Project Period (FY) 2018-04-01 – 2022-03-31
Keywords平均曲率流 / 対称空間 / 等径部分多様体 / 複素等焦部分多様体 / 固有フレッドホルム部分多様体 / ゲージ理論 / カラビ・ヤウ構造 / 特殊ラグランジュ部分多様体
Outline of Final Research Achievements

Main research results in this research subject are as follows. First, we proved the homogeneity theorem for isoparametric submanifolds in a symmetric spaces of non-compact type admitting a reflective focal submanifold by using the complexification and the linearization to an infinite dimensional Hilbert space.
Secondly we proved a certain kind of collapsing theorem for the invariant regularized mean curvature flow in a Hilbert space equipped with a certain kind of Hilbert Lie group action and made the theory based to apply the collapsing theorem to the Gauge theory. Thirdly we gave a construction of Calabi-Yau structures on the complexification of a symmetric space of compact type and a construction of special Lagrangian submanifolds in the Calabi-Yau manifold.

Free Research Field

微分幾何学

Academic Significance and Societal Importance of the Research Achievements

本研究課題における研究成果は,微分幾何学の見地から,ゲージ理論や超対称性理論をはじめとする理論物理学を研究する上で,重要な結果になるのではないかと考えている。特に,研究成果の一つである正則化された平均曲率流の研究をゲージ理論へ応用するために土台となる理論の構築は,今後,注目されるのではないかと考えている。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi