• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Convexity and global behavior of geodesics on Finsler manifolds

Research Project

  • PDF
Project/Area Number 18K03314
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionFukuoka Institute of Technology

Principal Investigator

Shiohama Katshiro  福岡工業大学, 付置研究所, 研究員 (20016059)

Co-Investigator(Kenkyū-buntansha) 永野 哲也  長崎県立大学, 情報システム学部, 教授 (00259699)
糸川 銚  福岡工業大学, 情報工学部, 教授 (90223205)
印南 信宏  新潟大学, 自然科学系, フェロー (20160145)
Project Period (FY) 2018-04-01 – 2023-03-31
KeywordsFinsler metric / non-symmetric distance / geodesic / cut locus / conjugate locus / Christoffel symbols
Outline of Final Research Achievements

Let (M,F) be a complete Finsler n-manifold, n>1. We discuss the preimage of a curve c on M under the exponential map at p. If c does not meet the cut locus of p, then it is clearly lifted in the tangent space at p
via the inverse of the exponential map.However it is not possible if c meets the cut locus of p.
We discuss a curve c intersecting the cut locus of p, where it is conjugate to p. We then develop an idea to extend the exponential map at p beyond the cut locus to p.

Free Research Field

Finsler geometry

Academic Significance and Societal Importance of the Research Achievements

完備フィンスラー多様体の一点pに於ける指数写像がpの切断跡を延長して議論する事によって切断跡の微分可能性について議論出来る様になった点は大きな意義がある。フィンスラー多様体の距離関数が非対称である事に鑑みて
この議論は極めて重要であると考えられる.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi