2022 Fiscal Year Final Research Report
Rigorous analysis for high-dimensional critical behavior and crossover phenomena in mathematical models
Project/Area Number |
18K03406
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 12040:Applied mathematics and statistics-related
|
Research Institution | Hokkaido University |
Principal Investigator |
Sakai Akira 北海道大学, 理学研究院, 教授 (50506996)
|
Project Period (FY) |
2018-04-01 – 2023-03-31
|
Keywords | 自己回避歩行 / パーコレーション / イジング模型 / 相転移 / 臨界現象 / 上部臨界次元 / クロスオーバー現象 / レース展開 |
Outline of Final Research Achievements |
(1) We prove that bond percolation on the d-dimensional body-centered cubic lattice exhibits mean-field behavior as soon as d≧9. Although it is still away from the expected bound d≧7,it is superior to the best-ever bound d≧11 for bond percolation on the d-dimensional hypercubic lattice, proven by Fitzner and van der Hofstad (2017). (2) We prove that sufficiently spread-out long-range models of self-avoiding walk, percolation and the Ising model, which are defined by power-law decaying 2-body interactions (characterized by an exponent a), exhibit mean-field behavior as soon as d is bigger than the model-dependent upper-critical dimension dc when a≠2, and as soon as d≧dc when a=2. This solves a conjecture in physics (2014).
|
Free Research Field |
数学
|
Academic Significance and Societal Importance of the Research Achievements |
(1)或る次元dcより上では,臨界現象が平均場的なものに退化する.このdcを上部臨界次元dcと呼ぶ.最近接パーコレーションではdc=6と予想されているが,超立方格子上ではdc≦10であることが示されていた.本研究は,標準的な最近接格子の一つである体心立方格子上で一桁の次元dc≦8まで降りることに成功した初めての結果である. (2)境界冪長距離モデルの場合,臨界2点関数の漸近挙動には(高次元でも)対数補正がつくものと予想されていたが,それを証明する解析手法がなかった.本研究では,対数補正つき冪関数どうしの畳み込み不等式を開発し,dc直上まで平均場臨界現象に退化することを証明した初めての結果である.
|