• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of efficient algorithms for complex and real algebraic constraints

Research Project

  • PDF
Project/Area Number 18K03426
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionTokyo University of Science

Principal Investigator

Sato Yosuke  東京理科大学, 理学部第一部応用数学科, 教授 (50257820)

Project Period (FY) 2018-04-01 – 2023-03-31
KeywordsCGS / 根の連続性 / パラメーター / Border基底
Outline of Final Research Achievements

I proved an important property concerning continuity of the roots of a parametric system of algebraic equations. By this result, we can make a partition of the parameter space necessary for the computation of the saturation by parametric polynomial ideals. It enables us have a simple representation of the saturation by parametric polynomial ideals. I further proved that we can have a simpler representation if we use a parametric border bases instead of comprehensive Groebner system. I also showed that we can have a simpler representation of a comprehensive Groebner system if we use the computation of the saturation ideal by disequalities. Based on those results, I developed efficient algorithms of quantifier elimination for both complex and real algebraic constraints.

Free Research Field

計算機代数

Academic Significance and Societal Importance of the Research Achievements

国立情報学研究所の東ロボ君プロジェクトで扱うような大学入試の問題をそれと等価な限量子記号消去の問題として代数制約式に表現したとき、既存の数式処理システムの限量子記号消去プログラムを用いても大抵の場合処理が可能である。しかしながら、国際数学オリンピックで出題されるような、より難易度の高い問題は等式制約を多く含む複雑な代数制約式として表現され、 Mathematica や Maple 等の数式処理システムにおける既存の限量子記号消去プログラムでは処理できないものが多い。等式制約を多く含む代数制約式に対して有効な新しい限量子記号消去アルゴリズムを開発したことで処理できる問題の範囲が格段に広がった。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi