• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

A study on generating high resolution horizontal distribution of snowfall with dense observations.

Research Project

  • PDF
Project/Area Number 18K04655
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 25030:Disaster prevention engineering-related
Research InstitutionNagaoka University of Technology

Principal Investigator

KUMAKURA Toshiro  長岡技術科学大学, 工学研究科, 准教授 (00272865)

Project Period (FY) 2018-04-01 – 2022-03-31
Keywords降雪地上計測 / 降雪計測機器 / 降雪レーダー計測 / 地上降雪分布 / 雪氷災害防除
Outline of Final Research Achievements

Heavy snowfall which falls in a narrow area in a short period of time is less observed. The objectives of this study are to continue the development of an optical reflector type precipitation intensity measurement and precipitation type discrimination device that can make measurements at short time intervals, to develop a method to estimate ground precipitation from radar precipitation for solid precipitation with slow fall velocity, and to test a simple vehicle-mounted microwave Doppler device for solid precipitation observation. For the reflective instruments, we were able to output precipitation amount and type in quasi-real time, and for radar precipitation, we were able to estimate it by a backward trajectory analysis using the output of local weather simulations, and for the Doppler device, we were able to obtain the possibility of observing solid precipitations from field measurements.

Free Research Field

気象雪氷学

Academic Significance and Societal Importance of the Research Achievements

固体降水粒子の不規則性や測定手法の問題などにより、固体降水の測定にはまだ研究の余地が多く残されている。ここでは、短時間間隔での固体降水量の推定手法の1つを示し、また、落下速度の遅い降雪の水平移動を考慮したレーダー観測値からの地上降水量推定手法を示した。さらに既販であるものの精度が保てていない場合がある小型マイクロ波ドップラー装置を用いた固体降水落下速度の直接観測を試みた。いずれも現状を打開するために有用なものと考えられ、学術的にも社会的にも意義あるものである。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi