• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

The development of nonparametric methods for environment protection

Research Project

  • PDF
Project/Area Number 18K11199
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60030:Statistical science-related
Research InstitutionTokyo University of Science

Principal Investigator

Murakami Hidetoshi  東京理科大学, 理学部第一部応用数学科, 准教授 (60453677)

Project Period (FY) 2018-04-01 – 2023-03-31
Keywordsノンパラメトリック法 / Ranked Set Sampling / 近似分布 / 密度推定 / 検定統計量
Outline of Final Research Achievements

Ranked set sampling (RSS) is one of random sampling methods from population. RSS is widely used in many scientific fields. In this research, we proposed one-, two- and multisample nonparametric test statistics in testing problem. We derived the limiting distributions and the approximate distributions of proposed test statistics. In addition, we showed theoretical properties such as the asymptotic power, the consistency and the unbiasedness. We also suggested how to determine the rank of vector value of data. Since, in practice, the distribution of RSS data is unknown, we used the kernel density estimation to estimate the population distribution and parameters.

Free Research Field

統計学

Academic Significance and Societal Importance of the Research Achievements

一般的な仮説検定問題では,単純無作為抽出から得られたデータに対して分析を行なう.しかし,多種多様なデータが存在する現代社会においては,様々なサンプリング方法によって得られたデータが存在するため,既存の手法では対処できない問題が多々発生する.本研究成果は,その解決方法の1つとして,統計学のさらなる発展を担うものである.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi