• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Chern classes with modulus and higher structures of algebraic cycles

Research Project

  • PDF
Project/Area Number 18K13382
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionTohoku University

Principal Investigator

KAI Wataru  東北大学, 理学研究科, 助教 (00804296)

Project Period (FY) 2018-04-01 – 2024-03-31
Keywords代数的サイクル / モジュラス / 移動補題 / 陳類 / 相対K群 / 高次周群 / 素元 / Green-Taoの定理
Outline of Final Research Achievements

The main interest has been to connect the higher Chow group with modulus and relative higher K-groups. In joint work with Ryomei Iwasa, we showed a comparison of the Chow group with modulus and the relative K_0 of affine schemes. We sought to deepen it by refining the construction of Chern classes with modulus, but we didn't manage to do so within this period. In other directions, we established an alternative proof of Suslin's moving lemma and applied it to the Chow group with modulus. In joint work with Shusuke Otabe and Takao Yamazaki, we studied P^1 invariant sheaves with transfers. In joint work with Masato Mimura, Akihiro Munemasa, Shin-ichiro Seki and Kiyoto Yoshino, we proved the number field analog of the Green-Tao theorem. We went on to prove finer results about how prime elements are distributed in the integer ring of a given number field.

Free Research Field

代数幾何、整数論

Academic Significance and Societal Importance of the Research Achievements

モジュラス付き代数的サイクルは、A^1 不変な現象に適用範囲を限定しない、より一般のモチーフ理論の構築という昨今の研究の流れの嚆矢となる試みである。この枠組みでの諸現象の探究は、より一般のモチーフ理論がどう構築されるべきか一定の示唆を与えるため、学界から関心を寄せられている。
一方、数体の素元の性質の殆どは、翻訳して素数の性質としても理解でき、もとより素数は人々(少なくとも、数学者)の関心を集めてやまないものである。多項式の素数値に関するいわゆるSchinzel予想にも広い意味で関わっていて素数の理論の大きな流れに沿った研究の方向だと思う。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi