• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2018 Fiscal Year Research-status Report

アファインヤンギアンの表現論と可積分系

Research Project

Project/Area Number 18K13390
Research InstitutionKobe University

Principal Investigator

小寺 諒介  神戸大学, 理学研究科, 特命助教 (20634512)

Project Period (FY) 2018-04-01 – 2021-03-31
Keywordsアファインヤンギアン / ブレイド群 / evaluation写像
Outline of Annual Research Achievements

(1) ヤンギアンへのブレイド群作用に関する研究を完成し,論文にまとめた.この結果は学術雑誌に受理され,出版済みである.
(2) アファインヤンギアンのevaluation写像について研究を行った.A型ヤンギアンにはevaluation写像が存在し,その表現論を詳しく調べる重要な道具となっている.アファインA型の場合にはGuayが類似の写像を導入していたが,その証明は省略されていた.私はこの証明を書き下す過程で,Guayの定義した写像がwell-definedになるためにはアファインヤンギアンの二つのパラメータの間に代数的な関係式が必要なことに気づき,詳細を論文にまとめた.この事実はA型ヤンギアンには見られなかった新しい現象である.論文では,さらにevaluation写像を使って構成した表現の最高ウェイトを計算した.この論文は学術雑誌に投稿し,査読中である.
その後はevaluation写像の表示式とパラメータに関する条件を整理した.その結果,他の文献にも類似の条件が現れることが判明したため,そうした結果との直接的な関係を理解するべく研究を続けている.
(3) アファインヤンギアンのFock表現の定義関係式を決定するため,まずパラメータを特殊化して得られるLie代数の表現について考察した.このLie代数において,最高ウェイト条件と可積分条件を課して定義される表現の指標を計算し,部分的な結果を得た.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

【研究実績の概要】で述べたGuayの論文は2007年に出版されていたが,evaluation写像の表示式が複雑なこともあり,応用は知られていなかった.今年度の研究でその表示式を簡略化することができたため,今後の表現論への応用が期待される.その際,パラメータに関する条件が必要なことをきちんと認識したことは重要である.

Strategy for Future Research Activity

以下の研究を予定している.
(1) evaluation写像による表現の構成と,他の文献に現れる(特に幾何学的な)構成との関係を明らかにする.
(2) シャッフル代数を用いて,アファインヤンギアンの中にHeisenberg代数を構成する.
(3) Fock表現の定義関係式を決定する.

Causes of Carryover

何件かの出張経費を他の財源から賄うことができたため,次年度使用額が生じた.
次年度に行う研究打ち合わせのための出張費に使う予定である.

  • Research Products

    (10 results)

All 2019 2018 Other

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (4 results) (of which Invited: 1 results) Remarks (2 results)

  • [Journal Article] Affine Yangian action on the Fock space2019

    • Author(s)
      Ryosuke Kodera
    • Journal Title

      Publications of the Research Institute for Mathematical Sciences

      Volume: 55 Pages: 189-234

    • DOI

      10.4171/PRIMS/55-1-6

    • Peer Reviewed
  • [Journal Article] Braid group action on affine Yangian2019

    • Author(s)
      Ryosuke Kodera
    • Journal Title

      SIGMA Symmetry, Integrability and Geometry: Methods and Applications

      Volume: 15 Pages: 1-28

    • DOI

      https://doi.org/10.3842/SIGMA.2019.020

    • Peer Reviewed
  • [Journal Article] Higher level Fock spaces and affine Yangian2018

    • Author(s)
      Ryosuke Kodera
    • Journal Title

      Transformation Groups

      Volume: 23 Pages: 939-962

    • DOI

      https://doi.org/10.1007/s00031-018-9491-8

    • Peer Reviewed
  • [Journal Article] Quantized Coulomb branches of Jordan quiver gauge theories and cyclotomic rational Cherednik algebras2018

    • Author(s)
      Ryosuke Kodera, Hiraku Nakajima
    • Journal Title

      String-Math 2016, Proceedings of Symposia in Pure Mathematics

      Volume: 98 Pages: 49-78

    • DOI

      10.1090/pspum/098/03

    • Peer Reviewed
  • [Presentation] Braid group action on affine Yangian2018

    • Author(s)
      小寺諒介
    • Organizer
      Algebraic Lie Theory and Representation Theory 2018
  • [Presentation] On Guay's evaluation map for affine Yangians2018

    • Author(s)
      小寺諒介
    • Organizer
      日本数学会2018年度秋季総合分科会
  • [Presentation] Braid group action on affine Yangian2018

    • Author(s)
      小寺諒介
    • Organizer
      RIMS共同研究(公開型)「組合せ論的表現論の諸相」
  • [Presentation] Affine Yangians and integrable systems2018

    • Author(s)
      小寺諒介
    • Organizer
      日本数学会2019年度年会 無限可積分系セッション特別講演
    • Invited
  • [Remarks] Ryosuke Kodera

    • URL

      http://www2.kobe-u.ac.jp/~kryosuke/index.html

  • [Remarks] Kodera Ryosuke

    • URL

      http://www2.kobe-u.ac.jp/~kryosuke/index-j.html

URL: 

Published: 2019-12-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi