2021 Fiscal Year Final Research Report
Compact traveling waves for mean-curvature flow with driving force
Project/Area Number |
18K13458
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 12040:Applied mathematics and statistics-related
|
Research Institution | Okayama University |
Principal Investigator |
MONOBE HARUNORI 岡山大学, 異分野基礎科学研究所, 特任准教授 (20635809)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Keywords | 平均曲率流方程式 / 進行波解 |
Outline of Final Research Achievements |
We studied the mean-curvature flow with driving force which is derived from some mathematical models, such as cell-locomotion and droplet motion. As a result, we have the following results : (1) if the driving force is positive, there exists a unique compact traveling wave (CTW) solutions. (2) if the driving force is negative, there does not exists any CTW solutions. (3). if the driving force is sign-changing and some conditions are satisfied, there exists a unique CTW solutions. (4). if CTW exists, every CTW is convex and unstable.
|
Free Research Field |
数学
|
Academic Significance and Societal Importance of the Research Achievements |
偏微分方程式で記述される数理モデルにおいて、スポット状パターンの発生メカニズムは未だ明確にはわかっておらず、現在もモデル構築の際は、経験則に頼るところが多い。このため、より複雑な形状のパターンへの解析が滞っている。本研究成果は、スポット状の物質が移動する現象の数理モデルを考えた時に、その構築方法や解の振る舞いの解析の手助けになると考えられる。
|