• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Analysis of a global-in-time solution for reaction-diffusion system using verified numerical computation

Research Project

  • PDF
Project/Area Number 18K13462
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionChuo University (2021-2022)
Waseda University (2018-2020)

Principal Investigator

Mizuguchi Makoto  中央大学, 理工学部, 助教 (90801241)

Project Period (FY) 2018-04-01 – 2023-03-31
Keywords計算機援用証明 / 解の精度保証付き数値計算法 / 放物型偏微分方程式
Outline of Final Research Achievements

In this research, we mainly aim to improve numerical verification method for solutions of parabolic partial differential equations including reaction-diffusion systems, and to establish a method for verifying the existence of special solutions such as global-in-time solutions and blow-up solutions. First, for improving the verification method, we obtained the best value of the error constant of the semi-discrete approximation of the parabolic equation.The improved method were finally able to clarify the range of the explosion time of the blow-up solution, which could not be clarified by previous mathematical methods, of a parabolic equation.

Free Research Field

偏微分方程式の解の精度保証付き数値計算

Academic Significance and Societal Importance of the Research Achievements

一般的な非線形偏微分方程式の解を解析的に解くことは難しい. しかし解の精度保証付き数値計算法を用いれば偏微分方程式の解の厳密な存在範囲を明確に示すことができる. そのため方程式の解の存在だけでなく, 数値シミュレーション結果の妥当性を保証するといった工学面に対する応用も可能である. この解の精度保証付き数値計算法の改良かつその手法の適応範囲の拡大が本研究の主な目的である. 本研究の最も重要な成果はその計算手法を用いてある放物型方程式の解の爆発時間の範囲を得たことである. それは既存の数学的手法では得られなかった現象(爆発現象)の一端が解明できたことを意味する.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi