2021 Fiscal Year Final Research Report
Response analysis of dynamic systems subjected to non-Gaussian random excitation with a wide range of kurtosis
Project/Area Number |
18K13712
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 20010:Mechanics and mechatronics-related
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Keywords | 不規則振動 / 確率力学 / 非ガウス性不規則励振 / 確率論的応答解析 / 応答分布推定 / 確率密度関数 / 尖度 / 等価非ガウス励振化法 |
Outline of Final Research Achievements |
Non-Gaussian random excitations with heavy-tailed probability distributions exist in various engineering fields. Since the tails of the distribution determine the probability of occurrence of large excitation, it is important to take the tail shape into account appropriately and to clarify the effect of the tail shape on the system response. This study focused on the kurtosis that characterizes the tail shape of the probability distribution and conducted the following three studies: 1. Development of a non-Gaussian random excitation model with a wide range of kurtosis; 2. Development of a response analysis method for the system under the above non-Gaussian excitation model; 3. Elucidation of the effects of the kurtosis, bandwidth and dominant frequency of the excitation on the response characteristics.
|
Free Research Field |
不規則振動
|
Academic Significance and Societal Importance of the Research Achievements |
実在する非ガウス性不規則励振は多様な尖度をもつため,尖度を広い範囲で調節できる励振モデルとそのモデルを用いた系の応答解析法の開発が求められていた.本研究では,これらのニーズを満たし,従来のように励振のガウス性を仮定すると見逃す恐れのある大励振の影響を適切に考慮した解析手法を完成させた.これは,学術的課題を解決するだけでなく,励振の分布の裾を考慮したより信頼性の高いものつくりの実現につながる基礎的成果としても意義があると考える. また,広範囲の尖度を包括的に考慮することで,単一の尖度を扱った研究では知り得なかった,尖度の変化による応答特性の変化を明らかした.
|