2019 Fiscal Year Final Research Report
Unified formulation and generalization performance of local-feature learning
Project/Area Number |
18K18001
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 60010:Theory of informatics-related
|
Research Institution | Kyushu University |
Principal Investigator |
Suehiro Daiki 九州大学, システム情報科学研究院, 助教 (20786967)
|
Project Period (FY) |
2018-04-01 – 2020-03-31
|
Keywords | 局所パターン / 機械学習 / 汎化性能保証 / shapelet / マルチインスタンス学習 |
Outline of Final Research Achievements |
The main results are as follows: (1)We proposed a general formulation of the local-feature-based learning problem by using Multiple-Instance Learning framework. (2)We showed the theoretical generalization performance of the local-feature-based hypothesis class. We applied this theory to Shapelet Learning, which is a popular task in the time-series domain, and we gave the first generalization bound of shapelet-based hypothesis class. (3)We proposed an efficient algorithm to solve the learning problem. (4)We demonstrated that our algorithm effectively works in practice.
|
Free Research Field |
統計的学習理論
|
Academic Significance and Societal Importance of the Research Achievements |
本研究は,時系列分類問題におけるShapelet学習のような,局所パターン学習問題と,マルチインスタンス学習問題の関連性を世界で初めて示した.従来各ドメインで独立に発展してきた様々な局所パターン学習問題に対し,統一的な定式化,汎化性能保証,解法を与えたことは,機械学習分野に大きな貢献を与えたと言える.また,本研究の骨子となった「マルチインスタンス学習の枠組みに基づく学習問題の一般化」は,局所パターン学習問題に限らない,様々な学習問題に幅広く展開可能であり,新たな研究分野の開拓に期待できる.
|