• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Expansion and Enhancement of Power Allocation Management System Based on Combinatorial Optimization through a Bottom-Up Approach

Research Project

  • PDF
Project/Area Number 18K18037
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 60060:Information network-related
Research InstitutionMie University

Principal Investigator

Morimoto Naoyuki  三重大学, 工学研究科, 准教授 (40739447)

Project Period (FY) 2018-04-01 – 2024-03-31
Keywords電力割当制御システム / 組合せ最適化アルゴリズム / IoT
Outline of Final Research Achievements

In this research project, we studied methods to enhance and expand power allocation control based on combinatorial optimization, aiming to improve power consumption efficiency. For expansion, we proposed optimization methods for efficient scheduling of power allocation optimization problems involving multiple households and other combinatorial optimization problems applicable to power allocation control. For functionality enhancement, we focused on crucial elements in power networks such as air conditioning and batteries. We explored optimization and control methods for power allocation by constructing systems utilizing IoT technology. Additionally, we evaluated the usefulness of these methods using actual data whenever possible, supplemented by computer simulations.

Free Research Field

電力割当制御システム

Academic Significance and Societal Importance of the Research Achievements

学術的意義は、複数家庭を想定した電力割当制御問題の定式化と最適化アルゴリズムの開発により、電力消費の効率化に貢献する点である。主に、エネルギー消費量の削減・室温の維持・換気の3つの要素を考慮した室温予測システム、および電力消費の効率化に応用可能と考えられる組合せ最適化アルゴリズムの研究を行なった。社会的意義としては、エネルギー管理システムの高機能化により、エネルギー消費量の削減や、快適で安全な室温・環境維持に寄与する点が挙げられる。これにより、持続可能なエネルギー利用と生活の質向上を両立させる社会の実現が期待される。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi