• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Estimation of Learning Activity and Learning Performance of Junior High School Student

Research Project

  • PDF
Project/Area Number 18K18656
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 9:Education and related fields
Research InstitutionKyushu University

Principal Investigator

MINE Tsunenori  九州大学, システム情報科学研究院, 准教授 (30243851)

Project Period (FY) 2018-06-29 – 2022-03-31
Keywords振り返り文 / テキストマイニング / 機械学習 / 成績推定 / アドバイス支援 / 特徴抽出
Outline of Final Research Achievements

This study aims to create a system for automatically extracting characteristic expressions related to student learning behavior and learning status from their written reflections, and to utilize the extracted expressions to generate advice for improving the student learning behavior and learning ability. Specifically, we constructed a model that judges the top and bottom grades in regular examinations at a student's junior high school using the student written reflections provided by a cram school. We extracted features such as object, verb, negative, and polite expressions from the reflective sentences, weighted them, and combined them with various machine learning tools to improve the classification accuracy by up to 30% or more compared to the case where no weighting was applied.

Free Research Field

人工知能応用

Academic Significance and Societal Importance of the Research Achievements

本研究は,中学生の振り返り文を分析し,成績推定を行うことが可能となることを示した初めての研究である.研究の結果,振り返り文には成績推定に有用な特徴があること,各特徴と成績との間に異なる関連の強さがあること,この強さを考慮した重み付けを利用する場合と利用しない場合とでは,成績推定精度に最大30%以上の差が生じること,時期によって成績推定精度が変化し,最高の推定精度を得る機械学習器も一定しない(時期によって変化する,つまりデータの特徴が時期によって異なる)ことなどを確認した.これらから学習状況や学習行動の解釈,学習特性改善のためのアドバイス生成への応用も期待される.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi