2021 Fiscal Year Final Research Report
Supersingular representations of p-adic groups
Project/Area Number |
18K18707
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 11:Algebra, geometry, and related fields
|
Research Institution | The University of Tokyo |
Principal Investigator |
Abe Noriyuki 東京大学, 大学院数理科学研究科, 准教授 (00553629)
|
Project Period (FY) |
2018-06-29 – 2022-03-31
|
Keywords | 超特異表現 / 簡約群 |
Outline of Final Research Achievements |
Langlands correspondence is one of the most important problems in number theory. The aim of this project is, by studying modulo p representations of reductive groups, to make a contribution to Langlands correspondence, especially modulo p Langlands correspondence. Among modulo p representations, a class called supersingular representations are still mysterious and I tried to study such representations, I got some results on algebraic representations of reductive groups which is important to study supersingular representations.
|
Free Research Field |
表現論
|
Academic Significance and Societal Importance of the Research Achievements |
Langlands対応は整数論に始まり,表現論や数理物理など多くの分野と関連し現在では巨大な理論として多くの研究者により研究が行われてきている.また,簡約群の代数的な表現論も近年急速な発展を見せており,注目されている理論である.本研究はこれらの理論,特に後者に対して,主に組み合わせ論的な側面から新たな知見を与えることができた.関連する研究が他の研究者により行われたことを考えても,一定の学術的意義のある結果を得ることができた.
|