• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Supersingular representations of p-adic groups

Research Project

  • PDF
Project/Area Number 18K18707
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 11:Algebra, geometry, and related fields
Research InstitutionThe University of Tokyo

Principal Investigator

Abe Noriyuki  東京大学, 大学院数理科学研究科, 准教授 (00553629)

Project Period (FY) 2018-06-29 – 2022-03-31
Keywords超特異表現 / 簡約群
Outline of Final Research Achievements

Langlands correspondence is one of the most important problems in number theory. The aim of this project is, by studying modulo p representations of reductive groups, to make a contribution to Langlands correspondence, especially modulo p Langlands correspondence. Among modulo p representations, a class called supersingular representations are still mysterious and I tried to study such representations, I got some results on algebraic representations of reductive groups which is important to study supersingular representations.

Free Research Field

表現論

Academic Significance and Societal Importance of the Research Achievements

Langlands対応は整数論に始まり,表現論や数理物理など多くの分野と関連し現在では巨大な理論として多くの研究者により研究が行われてきている.また,簡約群の代数的な表現論も近年急速な発展を見せており,注目されている理論である.本研究はこれらの理論,特に後者に対して,主に組み合わせ論的な側面から新たな知見を与えることができた.関連する研究が他の研究者により行われたことを考えても,一定の学術的意義のある結果を得ることができた.

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi