• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Final Research Report

Computational and Quantum-Physical Approach to Graph Optimization and Invariants for Quantum Advantage

Research Project

  • PDF
Project/Area Number 18K19776
Research Category

Grant-in-Aid for Challenging Research (Exploratory)

Allocation TypeMulti-year Fund
Review Section Medium-sized Section 60:Information science, computer engineering, and related fields
Research InstitutionThe University of Tokyo

Principal Investigator

Imai Hiroshi  東京大学, 大学院情報理工学系研究科, 教授 (80183010)

Project Period (FY) 2018-06-29 – 2022-03-31
Keywords量子計算 / 量子優越性 / グラウ最適化 / グラフ不変量 / 計算量理論 / 近似量子コンピュータ
Outline of Final Research Achievements

For the problem of computing the Ising partition function of a graph, we focus on graph parameters such as branch width and rank width, and present multiple efficient algorithms which are quite efficient when those parameters are relatively small. We extend computing such invariants from the Ising partition function to the Potts partition function and then to the 2-variable Tutte polynomial of the graph. We also obtain results on the number of acyclic or totally cyclic orientations by orienting each edges of the graph. The smallest counterexample in which the unimodality of the Tutte polynomial does not hold is given. With regard to quantum advantage, we verified the violation of various Bell inequalities in the IBM quantum computers. We demonstrated nonlocal qunautm effects these near-term approximate quantum computers, which lead to shoing the quantum advantage in shallow quantum circuits.

Free Research Field

量子計算

Academic Significance and Societal Importance of the Research Achievements

量子コンピュータ開発のスピードが、グローバルな研究投資によって実機が使えるようになり、本研究で開発した古典・量子アルゴリズムについて、研究当初は難しかった量子コンピュータにより実験するところまで到達できている。それによって、現在のノイズのある近似量子コンピュータにおける誤差緩和手法の適用と、さらなる方向の提示もでき、当初の予想を超える研究発表を行うことができている。シミュレーションではなく、近似量子コンピュータ実機による実験を先駆的に発表することで、社会的にも量子コンピュータの時代の到来を認識できるものとなっている。

URL: 

Published: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi