2011 Fiscal Year Final Research Report
Study on algebraic varieties related to moduli spaces and algebraic cycles
Project/Area Number |
19104001
|
Research Category |
Grant-in-Aid for Scientific Research (S)
|
Allocation Type | Single-year Grants |
Research Field |
Algebra
|
Research Institution | Hosei University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
SAITO Takeshi 東京大学, 大学院・数理科学研究科, 教授 (70201506)
SAITO Shuji 東京工業大学, 大学院・理工学研究科, 教授 (50153804)
TERASOMA Tomohide 東京大学, 大学院・数理科学研究科, 教授 (50192654)
MUKAI Shigeru 東京大学, 数理解析研究所, 教授 (80115641)
KONDO Masayuki 名古屋大学, 大学院・多元数理科学研究科, 教授 (50186847)
NAKAMURA Iku 北海道大学, 大学院・理学研究院, 教授 (50022687)
ISHII Shihoko 東京大学, 大学院・数理学研究科, 教授 (60202933)
ISHIDA Masanori 東北大学, 大学院・理学研究科, 教授 (30124548)
|
Research Collaborator |
G. van der Geer Amsterdam 大学, Korteweg-de Vries Institute of Mathematics, 教授
|
Project Period (FY) |
2007 – 2011
|
Keywords | 代数幾何 |
Research Abstract |
Algebraic variety is the geometric object which is defined by somepolynomials. It is a fundamental object to study in mathematics. In our research, westudied algebraic varieties in characteristic p > 0, and we defined the notions of a-number,b-number and h-number. We made clear the relations between them, and gave someapplications. We also studied superspecial K3 surfaces in characteristic 2, and 3. We gaveinteresting configurations of non-singular rational curves on them and determined therelation between the configurations and the lattice theory.
|
Research Products
(30 results)