2010 Fiscal Year Final Research Report
Modular representation theory of algebraic groups
Project/Area Number |
19540045
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Osaka City University |
Principal Investigator |
KANEDA MASAHARU Osaka City University, 大学院・理学研究科, 教授 (60204575)
|
Co-Investigator(Kenkyū-buntansha) |
TANISAKI Toshiyuki 大阪市立大学, 大学院・理学研究科, 教授 (70142916)
YAGITA Nobuaki 茨城大学, 教育学部, 教授 (20130768)
TEZUKA Michishige 琉球大学, 理学部, 教授 (20197784)
FURUSAWA Masaaki 大阪市立大学, 大学院・理学研究科, 教授 (50294525)
HASHIMOTO Yoshitake 東京都市大学, 知識工学部, 教授 (20271182)
KAWATA Shigeto 大阪市立大学, 大学院・理学研究科, 准教授 (50195103)
ASASHIBA Hideto 静岡大学, 理学部, 教授 (70175165)
|
Project Period (FY) |
2007 – 2010
|
Keywords | 表現論 |
Research Abstract |
Let G be a reductive algebraic group over a field of positive characteristic, and P a parabolic subgroup of G with the respective Weyl groups W and W_P. In joint work with Ye Jiachen we have constructed a Karoubian completeexceptional sequence of coherent sheaves E_w, w/in W/W_P, on G/P in case G is of rank atmost 2,using the representation theory of G_1P, G_1 the frobenius kernel of G.
|
Research Products
(41 results)