• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2007 Fiscal Year Annual Research Report

可換代数学におけるネター局所環の研究

Research Project

Project/Area Number 19540060
Research InstitutionOsaka Electro-Communication University

Principal Investigator

西村 純一  Osaka Electro-Communication University, 工学部, 教授 (00025488)

Co-Investigator(Kenkyū-buntansha) 坂田 定久  大阪電気通信大学, 医療福祉工学部, 教授 (60175362)
山原 英男  大阪電気通信大学, 工学部, 准教授 (30103344)
宮崎 充弘  京都教育大学, 教育学部, 准教授 (90219767)
KeywordsBig Cohen-Macaulay加群 / ネター局所環 / ホモロジー予想 / 交叉予想 / Frobenius写像 / Artin近似定理 / Witt表現 / Tight closure
Research Abstract

Big Cohen-Macaulay加群の構成とその応用:H.BassやM.Auslander等によって問われたネター局所環上有限生成加群に関する諸予想は,「ホモロジー予想」とも呼ばれ,可換代数学における基本的重要問題として今日まで多くの研究がなされてきた.C.Peskine-L.Szpiroは,予想がネター局所環上有限生成自由加群の複体の交叉予想から導かれることを示し,標数正の体を含む場合の上記諸予想を解決した.その後,M.Hochsterは,ネター局所環のパラメーター系が正則列である,いわゆる「Big Cohen-Macaulay加群」の存在が単項予想,直和因子予想や新交叉予想を導き,それらがPeskine-Szpiroの交叉予想を導くことを示した.そして,体を含むネター局所環上にBig Cohen-Macaulay加群を構成し,等標数ネター局所環では上記予想がすべて成立することを示した.それ以来,多くの研究者が不等標数ネター局所環上にBig Cohen-Macaulay加群を構成しようと努力したが成功しなかった.我々は,2次元不等標数完備局所環上のBig Cohen-Macaulay加群の構成,即ちmodificationの明示表現を詳しく調べ,完備局所環の構造定理・Witt表現FlenerのBertini定理・Jacobian判定法, Frobenius写像, Tight closureの理論等を用い,3次元不等標数ネター局所環上にもBig Cohen-Macaulay加群が構城できることを示した.さらに,4次元以上の不等標数ネター局所環上にも,帰納的にBig Cohen-Macaulay加群が構成できることを示しつつある.

  • Research Products

    (3 results)

All 2008 2007

All Journal Article (2 results) (of which Peer Reviewed: 1 results) Presentation (1 results)

  • [Journal Article] Invariants of the unipotent radical of a Borel subgroup2008

    • Author(s)
      Mitsuhiro Miyazaki
    • Journal Title

      第29回可換環論シンポジウム報告集

      Pages: 43-50

  • [Journal Article] A sufficient condition for a Hibi ring to be level andlevelness of Schubert cycles2007

    • Author(s)
      Mitsuhiro Miyazaki
    • Journal Title

      Communications in Algebra 35

      Pages: 2894-2900

    • Peer Reviewed
  • [Presentation] Characteristic free approach to the rings of invariants of the unipotent radical of Borel subgroups2008

    • Author(s)
      Mitsuhiro Miyazaki
    • Organizer
      日本数学会年会
    • Place of Presentation
      近畿大学理工学部
    • Year and Date
      2008-03-25

URL: 

Published: 2010-02-04   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi