• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2009 Fiscal Year Final Research Report

Exceptional Dehn surgeries on hyperbolic knots and their arrangement

Research Project

  • PDF
Project/Area Number 19540089
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeSingle-year Grants
Section一般
Research Field Geometry
Research InstitutionHiroshima University

Principal Investigator

TERAGAITO Masakazu  Hiroshima University, 大学院・教育学研究科, 准教授 (80236984)

Co-Investigator(Kenkyū-buntansha) GODA Hiroshi  東京農工大学, 大学院・共生科学技術研究院, 教授 (60266913)
Project Period (FY) 2007 – 2009
Keywords結び目 / 3次元多様体 / デーン手術
Research Abstract

For a hyperbolic knot in the 3-sphere, Dehn surgery yielding a non-hyperbolic 3-manifold is called an exceptional Dehn surgery. There are essentially three types of exceptional Dehn surgery. In this project, we focused on lens space surgery and toroidal surgery, and obtained various results. In particular, I gave an infinite family of hyperbolic knots admitting toroidal surgeries corresponding to three consecutive integers, and an infinite family of hyperbolic knots admitting lens space surgery between toroidal surgeries.

  • Research Products

    (11 results)

All 2010 2009 2008 2007 Other

All Journal Article (6 results) (of which Peer Reviewed: 6 results) Presentation (5 results)

  • [Journal Article] Knots yielding homeomorphic lens spaces by Dehn surgery2010

    • Author(s)
      斎藤敏夫, 寺垣内政一
    • Journal Title

      Pacific J. Math 244,no.1

      Pages: 169-192

    • Peer Reviewed
  • [Journal Article] Toroidal Dehn surgery on hyperbolic knots and hitting number2010

    • Author(s)
      寺垣内政一
    • Journal Title

      Topology Appl 157,no.1

      Pages: 269-273

    • Peer Reviewed
  • [Journal Article] Boundary structure of hyperbolic 3-manifolds admitting toroidal fillings at large distance2009

    • Author(s)
      Sangyop Lee, 寺垣内政一
    • Journal Title

      Math. Ann. 344

      Pages: 119-159

    • Peer Reviewed
  • [Journal Article] Non-invertible knots having toroidal Dehn surgery of hitting number four2008

    • Author(s)
      寺垣内政一
    • Journal Title

      Hiroshima Math. J 38,no.3

      Pages: 447-454

    • Peer Reviewed
  • [Journal Article] Hyperbolic knots with three toroidal Dehn surgeries2008

    • Author(s)
      寺垣内政一
    • Journal Title

      J. Knot Theory Ramifications 17,no.9

      Pages: 1051-1061

    • Peer Reviewed
  • [Journal Article] Cyclic surgery between toroidal surgeries

    • Author(s)
      寺垣内政一
    • Journal Title

      Canad. Math. Bull. (印刷中)

    • Peer Reviewed
  • [Presentation] Knots obtained from the minimally twisted five chain link and lens space surgery2009

    • Author(s)
      寺垣内政一
    • Organizer
      Workshop「Simplicial Complexes Arising in Low-Dimensional Topology」
    • Place of Presentation
      東京工業大学
    • Year and Date
      2009-07-02
  • [Presentation] Knots yielding homeomorphic lens spaces by Dehn surgery2009

    • Author(s)
      寺垣内政一
    • Organizer
      国際研究集会「Knots in Washington」
    • Place of Presentation
      George Washington University
    • Year and Date
      2009-01-10
  • [Presentation] Knots yielding homeomorphic lens spaces by Dehn surgery2008

    • Author(s)
      寺垣内政一
    • Organizer
      研究集会「Intelligence of Low Dimensional Topology」
    • Place of Presentation
      大阪市立大学
    • Year and Date
      2008-10-07
  • [Presentation] Hyperbolic knots with three toroidal Dehn surgeries2007

    • Author(s)
      寺垣内政一
    • Organizer
      国際会議「International Conference on Topology and its Applications 2007」
    • Place of Presentation
      京都大学
    • Year and Date
      2007-10-07
  • [Presentation] Hyperbolic knots with three toroidal Dehn surgeries2007

    • Author(s)
      寺垣内政一
    • Organizer
      日本数学会秋季総合分科会
    • Place of Presentation
      東北大学
    • Year and Date
      2007-09-21

URL: 

Published: 2011-06-18   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi