2009 Fiscal Year Final Research Report
Holomorphic mappings of Riemann surfaces with handles
Project/Area Number |
19540187
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Yamaguchi University |
Principal Investigator |
MASUMOTO Makoto Yamaguchi University, 大学院・理工学研究科, 教授 (50173761)
|
Co-Investigator(Kenkyū-buntansha) |
SHIBA Masakazu 広島大学, 名誉教授 (70025469)
YAMADA Akira 東京学芸大学, 教育学部, 教授 (60126331)
HATAYA Yasushi 山口大学, 大学院・理工学研究科, 助教 (20294621)
KIUCHI Isao 山口大学, 大学院・理工学研究科, 教授 (30271076)
KATO Takao 山口大学, 名誉教授 (10016157)
YANAGIHARA Hiroshi 山口大学, 大学院・理工学研究科, 准教授 (30200538)
|
Project Period (FY) |
2007 – 2009
|
Keywords | リーマン面 / 正則写像 / 等角写像 |
Research Abstract |
A Riemann surface is a surface at every point of which angles are defined. It is obtained from tori with holes together with a plane domain by identifying boundaries appropriately. The number of tori is called the genus of the Riemann surface. If you want to embed a Riemann surface R of genus one into a general Riemann surface S, that is, if you want to draw a map of R on S, then you will need some "space" on S. In the present research we introduce a method of measuring the space and establish a theorem analogous to the Koebe one-quarter theorem, a classical theorem in function theory on plane domains.
|
Research Products
(41 results)