• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2009 Fiscal Year Final Research Report

Development of a nonreflecting boundary condition based on the Riemann invariant manifold

Research Project

  • PDF
Project/Area Number 19760051
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeSingle-year Grants
Research Field Engineering fundamentals
Research InstitutionThe University of Tokyo

Principal Investigator

YAGUCHI Takaharu  The University of Tokyo, 大学院・情報工学系研究科, 助教 (10396822)

Project Period (FY) 2007 – 2009
Keywords数理工学 / 無反射境界条件 / Riemann不変量多様体 / 圧縮流体
Research Abstract

Nonreflecting boundary conditions are of importance in numerical simulations of compressive fluid. In this research I developed a new nonreflecting boundary condition based on the Riemann invariant manifold. An improvement of this boundary condition was found to be same as Thompson's boundary condition, and this provided a new derivation of Thompson's boundary condition and a stability analysis. Researches on the discrete variational method are also performed in order to stabilize this boundary condition. As a result, some extensions of the discrete variational method are achieved.

  • Research Products

    (11 results)

All 2010 2009 2008 2007 Other

All Journal Article (5 results) (of which Peer Reviewed: 2 results) Presentation (6 results)

  • [Journal Article] Conservative Numerical Schemes for the Ostrovsky Equation2010

    • Author(s)
      T. Yaguchi, T. Matsuo, M. Sugihara
    • Journal Title

      J. Comput. Appl. Math. 234

      Pages: 1036-1048

  • [Journal Article] An Extension of the Discrete Variational Method to Nonuniform Grids2010

    • Author(s)
      T. Yaguchi, T. Matsuo, M. Sugihara
    • Journal Title

      J. Comput. Phys. 229

      Pages: 4382-4423

  • [Journal Article] 離散変分法の非一様格子への拡張2009

    • Author(s)
      谷口隆晴, 松尾宇泰, 杉原正顯
    • Journal Title

      応用数理学会論文誌 19

      Pages: 371-431

    • Peer Reviewed
  • [Journal Article] 非粘性圧縮流体の等エントロピー流れにおけるある人工的境界条件とそのThompsonの無反射境界条件との関係について2008

    • Author(s)
      谷口隆晴
    • Journal Title

      応用数理学会論文誌 18

      Pages: 447-471

    • Peer Reviewed
  • [Journal Article] 波動現象シミュレーションのための無反射境界の作り方2007

    • Author(s)
      谷口隆晴
    • Journal Title

      シミュレーション 26

      Pages: 84-89

  • [Presentation] An Energy Conservative Numerical Scheme on Mixed Meshes for the Nonlinear Schrodinger Equation2009

    • Author(s)
      T. Yaguchi, T. Matsuo, M. Sugihara
    • Organizer
      7th International Conference of Numerical Analysis and Applied Mathematics
    • Place of Presentation
      Crete, Greece
    • Year and Date
      2009-09-19
  • [Presentation] Challenge for Multi-Dimensional Cases II: on Non-Uniform Meshes2009

    • Author(s)
      T. Yaguchi
    • Organizer
      Workshop on Structure-Preserving Methods for Partial Differential Equations
    • Place of Presentation
      Tokyo, Japan
    • Year and Date
      2009-03-17
  • [Presentation] The Discrete Variational Derivative Method for a Class of Equations with Nonlocal Conservation/Dissipation Properties2008

    • Author(s)
      T. Yaguchi, T. Matsuo, M. Sugihar
    • Organizer
      13th International Congress on Computational and Applied Mathematics
    • Place of Presentation
      Ghent, Belgium
    • Year and Date
      2008-07-10
  • [Presentation] 等エントロピー流れにおけるRiemann不変量多様体を用いた無反射境界条件について2008

    • Author(s)
      谷口隆晴
    • Organizer
      日本応用数理学会2008年研 究部会連合発表会
    • Place of Presentation
      東京
    • Year and Date
      2008-03-08
  • [Presentation] Characteristic non-reflecting boundary conditions for multi-dimensional quasi-linear hyperbolic systems2007

    • Author(s)
      T. Yaguchi
    • Organizer
      6th International Congress on. Industrial and Applied Mathematics
    • Place of Presentation
      Zurich, Switzerland
    • Year and Date
      2007-07-16
  • [Presentation] Symmetry-Based Method to Derive Conservative Numerical Schemes for the Euler-Lagrange PDEs

    • Author(s)
      T. Yaguchi
    • Organizer
      2010 Tokyo Workshop on Structure-Preserving Methods
    • Place of Presentation
      Tokyo, Japan

URL: 

Published: 2011-06-18   Modified: 2016-04-21  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi