• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Dipolar quantum liquid phase induced by dynamics of strongly correlated pi-electrons and combined molecular lattice

Research Project

  • PDF
Project/Area Number 19H01833
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 13030:Magnetism, superconductivity and strongly correlated systems-related
Research InstitutionTohoku University

Principal Investigator

Sasaki Takahiko  東北大学, 金属材料研究所, 教授 (20241565)

Co-Investigator(Kenkyū-buntansha) 松浦 直人  一般財団法人総合科学研究機構(総合科学研究センター(総合科学研究室)及び中性子科学センター(研究開発, 中性子科学センター, 主任研究員 (30376652)
中 惇  東京電機大学, 理工学部, 准教授 (60708527)
Project Period (FY) 2019-04-01 – 2023-03-31
Keywords分子性有機導体 / 量子スピン液体 / ダイマーダイポール
Outline of Final Research Achievements

In this study, we aim to explore novel quantum liquid states, i.e., electron dielectric and dipole liquids, charge glasses, and spin liquids with phonon-assisted and phonon-enhanced polarization degrees of freedom, produced by the coupling of the hierarchical intramolecular vibration-lattice vibration (phonon) dynamics characteristic of BEDT-TTF molecular conductors with the strongly correlated pi-electron charge and spin degrees of freedom. The quantum spin liquid material k-(BEDT-TTF)2Cu2(CN)3 and the antiferromagnetic Mott insulator k-BEDT-TTF)2Cu[N(CN)2]Cl have been investigated at ILL thermal neutron reactor in Grenoble, France. We have succeeded in measuring specific phonons coupled with pi-electron's charge and spin dynamics in collaboration with overseas collaborators in France and Germany. The phonon linewidth anomaly in each experiment reveals the importance of phonon dynamics.

Free Research Field

低温電子物性学

Academic Significance and Societal Importance of the Research Achievements

本研究の実施により明らかになった強相関系分子性有機導体におけるパイ電子電荷・スピンダイナミクスと結合したフォノン異常についての成果は,量子スピン液体や電荷ガラス状態などの量子的なパイ電子の振る舞いにおける階層的な分子格子構造の重要性を明確に示したものである.また,将来,高分子系・生体系などのさらなる複雑な分子格子系を有する有機物質の電子物性・信号伝達機構の解明や有機デバイス開発研究などにおいても,格子系ダイナミクスを取り込んだ有機フォノンサイエンスの礎としての意義を有する成果である.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi