• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Deep learning security and privacy focused on human-machine recognition gap

Research Project

  • PDF
Project/Area Number 19H04164
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Sakuma Jun  筑波大学, システム情報系, 教授 (90376963)

Project Period (FY) 2019-04-01 – 2023-03-31
Keywords機械学習 / 人工知能 / セキュリティ / プライバシー / 高信頼AI
Outline of Final Research Achievements

Achievements were made in the areas of attacks on AI, defense of AI, and explainable AI. Major results are as follows.In Attacks on AI, we proposed an adversarial audio example generation methodology for attacking speech recognition models in the physical world. The research results were accepted to IJCAI 2019 and have over 170 citations as of 2023. In AI defense, we developed a certified defense methodology against adversarial examples in content-based image retrieval using deep learning. In explainable AI, we proposed a methodology for deep learning classifiers that provides a type of explanation for why data X is classified into class Y because X has A, B, and does not have C. The research results were accepted by AAAI2022.

Free Research Field

機械学習

Academic Significance and Societal Importance of the Research Achievements

深層学習が社会にとって重要な判断や意思決定の一部を担うようになった場合, 深層学習そのものを不正利用したり,深層学習の判断や意思決定を不正に捻じ曲げて,不当に利益を得ようとする人間が現れると考えられる。そのような敵対的環境において深層学習を適切に動作させるためには深層学習特有のセキュリティの問題を解決する技術が必要である。また深層学習は、学習のために大量にデータを収集したり、予測のために対象に関するデータを取得したりする必要がある。研究ではこのような深層学習のセキュリティに関する問題に対する一定の解決のための方法論を構築した。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi