• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

New Developments in Non-Abelian Iwasawa Theory

Research Project

  • PDF
Project/Area Number 19K03432
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionWaseda University

Principal Investigator

Ozaki Manabu  早稲田大学, 理工学術院, 教授 (80287961)

Project Period (FY) 2019-04-01 – 2024-03-31
Keywordsガロワ群 / 類数 / K-群 / ゼータ函数
Outline of Final Research Achievements

The summary of the results obtained in this research is as follows:
1. For a totally imaginary finite extension k of the rational number field Q and the cyclotomic Z^-extension Ω of Q, when their intersection is Q, it was shown that the structure of the Galois group X(kΩ)=Gal(L/kΩ) of the maximal unramified Abelian extension L/kΩ characterizes the Galois closure of k. 2. Let k be a totally real number field. It was shown that X(k(μ)) completely determines the Dedekind zeta function of k. 3. For a finitely generated pro-p extension of an algebraic number field, it was proven that the class numbers of the intermediate fields converges p-adically, and a simple relationship was discovered between the p-adic limits of the class numbers and that of the order of the K_2-groups using the p-adic L-function.

Free Research Field

数論

Academic Significance and Societal Importance of the Research Achievements

Dedekindゼータ函数と種々のGalois群や類群などの数論的対象物との関係性を追究することは数論における重要なテーマの一つである.本研究に於いて従来知られていなかった興味深いそれらの関係性を発見することができた.
また,研究の過程で新たな研究課題を見出すことができたので,今後の研究の一つの指針を与えることもできた.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi