• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Fundamentals of rooted tree maps and study on multiple zeta values

Research Project

  • PDF
Project/Area Number 19K03434
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11010:Algebra-related
Research InstitutionKyoto Sangyo University

Principal Investigator

Tanaka Tatsushi  京都産業大学, 理学部, 教授 (60515196)

Project Period (FY) 2019-04-01 – 2023-03-31
Keywords根付き木写像 / 多重ゼータ値 / 多重L値 / Hopf代数 / 調和積代数 / 補間多重L値
Outline of Final Research Achievements

Based on Connes-Kreimer Hopf algebra of rooted trees, rooted tree maps was defined around 2018. They are closely related with multiple zeta values. This research makes some of their fundamentals clear. In particular, we got results on interpretation of rooted tree maps by means of harmonic algebra, explicit representation of antipode maps, and generalization of rooted tree maps applicable to multiple L-values.

Free Research Field

代数学

Academic Significance and Societal Importance of the Research Achievements

根付き木写像は, 多重ゼータ値の代数的理論に新たな切り口を与えた. perturbative QFTやFeynman物理学と多重ゼータ値論との関連を示唆する現象の一つとしても, 根付き木写像は学術的に興味深い. その純代数的な性質や拡張の可能性に関する本成果は十分に意義がある.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi