• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Study on dimension and topological spaces in coarse geometry

Research Project

  • PDF
Project/Area Number 19K03467
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 11020:Geometry-related
Research InstitutionEhime University

Principal Investigator

YAMAUCHI Takamitsu  愛媛大学, 理工学研究科(理学系), 教授 (00403444)

Project Period (FY) 2019-04-01 – 2024-03-31
Keywords粗幾何学 / 次元 / 位相空間
Outline of Final Research Achievements

We studied notions related to dimension in coarse geometry and topological spaces which reflect coarse geometric properties of metric spaces. As for dimension, we obtained results on coarse embeddability of hyperspaces consisting of finite subsets into a Hilbert space, and on transfinite asymptotic dimension, which is a transfinite extension of asymptotic dimension. As for topological spaces, we obtained results on coarse compactifications by means of generalized Gromov products, and on connectedness properties of the Higson corona of the half line. We also studied group coarse structures and dimensions defined for group actions.

Free Research Field

幾何学

Academic Significance and Societal Importance of the Research Achievements

有限集合からなる超空間のHilbert空間への粗埋め込み可能性の研究は、Gromov-Hausdroff距離空間の研究へ発展している。超限漸近次元に関する成果によって、Dydakによって導入された漸近的性質Dを超限漸近次元を用いて特徴付けることができた。一般化されたGromov積による粗コンパクト化の成果によって、粗コンパクト化の新たな記述が可能となった。半直線のHigsonコロナの連結性に関する成果によって、Higsonコロナの複雑な位相的性質を顕在化できた。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi