2023 Fiscal Year Final Research Report
Morse theory on manifolds with boundary and its application to Floer theory
Project/Area Number |
19K03495
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Tokyo Metropolitan University |
Principal Investigator |
Akaho Manabu 東京都立大学, 理学研究科, 准教授 (30332935)
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Keywords | 境界付き多様体 / Morse理論 / シンプレクティック多様体 / Floer理論 |
Outline of Final Research Achievements |
Morse theory has mainly dealt with closed manifolds, but in this research project, we consider Morse homology of manifolds with boundary, especially their algebraic structures, so called Morse homotopy, or A-infinity structures. In Morse homology of manifolds with boundary, the behavior of the integral curves of the gradient vector field of Morse functions near the boundary is important. So far, the research director has constructed a product structure called the cup product for the Morse homology of manifolds with boundary. But, unfortunately, for higher-order product structures, the behavior of the gradient tree that appears in these structures is too combinatorially complicated, and no explicit construction of such structures has yet been achieved.
|
Free Research Field |
シンプレクティック幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
Morse理論とは関数を用いて図形や空間の位相幾何学的な性質を調べる理論である。特に本研究課題では境界付き多様体におけるMorseホモロジーの代数構造に注目し研究を行なった。本研究の学術的意義は、境界付き多様体のMorseホモロジーを理解することにより、接触多様体を境界に持つシンプレクティック多様体におけるLagrange部分多様体のFloer理論や、接触多様体におけるLegendre部分多様体の接触ホモロジーへの理解の手助けになると考えられる点である。また、社会的意義としては、様々な場面に現れる関数の最大値最小値の問題や、変分問題への理解が深まる点であると期待している。
|