• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Studies on variational problems, optimization problems and nonlinear partial differential equations

Research Project

  • PDF
Project/Area Number 19K03587
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionTokyo Metropolitan University

Principal Investigator

Kurata Kazuhiro  東京都立大学, 理学研究科, 教授 (10186489)

Project Period (FY) 2019-04-01 – 2024-03-31
Keywords変分問題 / パターン形成 / 非線形シュレディンガー方程式 / 逆問題 / 凝集現象 / 漸近挙動 / メトリックグラフ
Outline of Final Research Achievements

In this study, we treated several nonlinear elliptic boundary value problems associated with corresponding pattern formation phenomena, for example FitzHugh-Nagumo system, Schanekenberg model, Keller-Segel chemotaxis model. Moreover, we also studied an inverse boundary value problem for the magnetic Shroedinger equation and several nonlinear elliptic problem on compact metric graphs.
We obtained results to clarify the relationship between the network structure of the compact metric graphs and the structure of solutions.

Free Research Field

変分問題と非線形偏微分方程式

Academic Significance and Societal Importance of the Research Achievements

様々なパターン形成問題の定常パターン形成のメカニズムを非線形楕円型微分方程式で記述される数理モデルの精密な数学解析を通して、理解することができるという点で、学術的意義は深いと考えている。様々な複雑な自然現象の基本的なメカニズムが単純な数理モデルに内在することを示しているという点で、数学解析の持つ社会的意義は大きいと思われる。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi