2022 Fiscal Year Final Research Report
Elucidation of supersymmetry breaking in superstring theory via resurgence
Project/Area Number |
19K03834
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 15010:Theoretical studies related to particle-, nuclear-, cosmic ray and astro-physics
|
Research Institution | Toyota Technological Institute |
Principal Investigator |
Kuroki Tsunehide 豊田工業大学, 工学(系)研究科(研究院), 教授 (40442959)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Keywords | 超弦理論 / 超対称性 / 行列模型 / resurgence / インスタントン |
Outline of Final Research Achievements |
In the previous work, we propose supersymmetric matrix model as nonperturbative formulation of a certain lower-dimensional superstring theory. We also derived a full perturbative expansion of one-point functions of non-supersymmetric operators. In this research, we first apply the idea of resurgence to it and succeed in reproducing the action of the instanton of the matrix model. Furthermore, we obtain a perturbative series of two-point functions of the non-supersymmetric operators at all order. We apply the resurgence to it and confirm that there is no ambiguity, and that the instanton action is correctly reproduced.
|
Free Research Field |
素粒子論、弦理論
|
Academic Significance and Societal Importance of the Research Achievements |
弦理論において、相関関数を摂動展開の全次数で求めることは対称性が高い場合などに限られていたが、本研究では超対称性を破る演算子の2点関数を全次数で求めており、存在価値が大きい。またこの導出の過程で、ランダム行列理論の2点関数を1点関数の積の和で表す一般的公式を導いており、この公式自体、今後様々な応用が期待される。またresurgenceの観点からは、同じ模型で複数種類の物理量に対して適用した例が少なく、この観点からも本研究は貴重な例を与えている。
|