• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development of high-performance scheduling methods by integrating domain-specific knowledge and generalized solutions methods

Research Project

  • PDF
Project/Area Number 19K04105
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 18020:Manufacturing and production engineering-related
Research InstitutionHiroshima University

Principal Investigator

Eguchi Toru  広島大学, 先進理工系科学研究科(工), 准教授 (80253566)

Project Period (FY) 2019-04-01 – 2024-03-31
Keywordsスケジューリング / ジョブショップ / 遺伝的アルゴリズム / 優先規則
Outline of Final Research Achievements

This research developed a scheduling method to enhance the efficiency of systems engaged in high-mix, low-volume manufacturing. As the number of parts and processing machines increases, the complexity of production scheduling problems grows exponentially, making it impractical to find optimal solutions on a practical scale. In this study, neural networks are employed to automatically learn effective scheduling strategies for efficient optimization. By integrating this learned knowledge with an optimization method, we developed a high-performance scheduling approach.

Free Research Field

生産システム

Academic Significance and Societal Importance of the Research Achievements

製造業においては顧客ニーズの多様化により効率的な多品種少量生産が求められている.そのような生産を行う工場では生産工程は複雑になり,適切な生産順序指示が重要であるが,この問題はNP困難と言われ,最適化が非常に難しい問題である.本研究はこの問題に取り組み,効率的に高性能なスケジュールを作成する方法を提案した.特に,近年の労働者不足により,作業者スケジューリングも含めたより効率的な生産スケジューリングが求められており,その実現の社会的意義は大きい.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi