2023 Fiscal Year Final Research Report
Establishment of evaluation method in pretreatment prostate cancer tumor aggressiveness using MRI-US fusion-guided targeted prostate biopsy
Project/Area Number |
19K08109
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 52040:Radiological sciences-related
|
Research Institution | Kawasaki Medical School |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
宮地 禎幸 川崎医科大学, 医学部, 教授 (00294463)
山本 亮 川崎医科大学, 医学部, 准教授 (30319959)
鹿股 直樹 聖路加国際大学, 聖路加国際病院, 部長 (60263373)
曽根 照喜 川崎医科大学, 医学部, 教授 (90179383)
|
Project Period (FY) |
2019-04-01 – 2024-03-31
|
Keywords | 前立腺癌 / MRI / MRIガイド下生検 / 腫瘍悪性度 / 拡散強調像 |
Outline of Final Research Achievements |
The accuracy of prostate cancer aggressiveness prior to treatment has a significant impact on subsequent treatment decisions. Recently, MRI-ultrasound fusion-guided prostate targeted biopsy (MRI-guided biopsy) has been covered by health insurance, and its discrimination ability has been improved compared to conventional systematic biopsy, but it is still insufficient. We focused on the ADC map, a diffusion-weighted prostate MRI image that reflects prostate cancer aggressiveness, and designed a clinical study to apply it to MRI-guided biopsy. The ability of MRI-guided biopsy with ADC maps to identify prostate cancer aggressiveness before treatment was a superior diagnostic method that could not be surpassed by machine learning models with the addition of MRI and clinical indicators to MRI-guided biopsy.
|
Free Research Field |
放射線診断学
|
Academic Significance and Societal Importance of the Research Achievements |
治療前の前立腺癌の悪性度はその後の治療法の決定に大きな影響を与えます。我々は、MRI‐超音波融合画像ガイド下前立腺標的生検の際に前立腺MRIの撮像法の一つである拡散強調像(ADC map)の情報を加えた生検方法を考案した。その診断精度は最近話題となっている人工知能(AI)を用いた機械学習モデルでも超えることができない高い診断能を有することが分かった。本研究の成果は、前立腺癌の患者さんに適切な治療を提供するための最適な診断法を明らかにし、今後それが臨床応用されることを示唆した。
|