2021 Fiscal Year Final Research Report
Estimation model for Crash and Near-crash events on older drivers
Project/Area Number |
19K11334
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 59010:Rehabilitation science-related
|
Research Institution | Aichi Shukutoku University |
Principal Investigator |
|
Project Period (FY) |
2019-04-01 – 2022-03-31
|
Keywords | 高齢ドライバ / Near-crash / ドライブレコーダ / 運転 / Naturalistic driving |
Outline of Final Research Achievements |
This study conducted 1) extracting crash and near-crash events (CNCs), 2) identifying significant indices for model, and 3) considering plausible models to estimate the possibility of occurrence of CNC, using human characteristics data from the older driver’s database and driving data obtained from drive recorders (DR) installed on the private vehicles of the older drivers. Available DR data provided 2,463 CNCs within 935,776km (1). Organizing the concepts of various human characteristics data among the database, Poisson regressions were indicated that a few cognitive performances and driving habits were related to CNCs (2). The traffic environment around the driver’s home area was represented by the number of intersections from geographic database and is considering the possible models with significant variables to predict the possibility of CNC occurrence (3). Although our models need to be further improved, the perspectives will help reduce crash involvement of older drivers.
|
Free Research Field |
加齢心理学、加齢工学、人間工学
|
Academic Significance and Societal Importance of the Research Achievements |
高齢ドライバの交通事故低減は重要な社会的課題であり、運転免許更新の過程でも運転の観察が導入されるようになった。本研究のNaturalistic driving studyから得られた運転データは自家用車での普段の運転を記録したもので、ドライバによっては5年近い長期データである。これは認知機能等豊富な人間特性データとも紐づいており、貴重なデータベースを構成している。さらにドライバの交通環境を考慮した予測モデルはドライバ固有の安全性評価として有用である。本研究は運転免許更新手続きで得られる情報を活用しているため、実用という意味でも有意義であると考えられる。
|