• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Respiratory motion analysis of patients with Parkinson's disease using optoelectronic plethysmography

Research Project

  • PDF
Project/Area Number 19K11336
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 59010:Rehabilitation science-related
Research InstitutionKawasaki Medical School

Principal Investigator

Hanayama Kozo  川崎医科大学, 医学部, 教授 (80189589)

Co-Investigator(Kenkyū-buntansha) 関 聰介  川崎医科大学, 医学部, 講師 (10341124)
目谷 浩通  川崎医科大学, 医学部, 准教授 (30330583)
山本 五弥子  川崎医科大学, 医学部, 講師 (60551215)
Project Period (FY) 2019-04-01 – 2023-03-31
Keywords呼吸リハビリテーション / 神経筋疾患 / パーキンソン病 / リハビリテーション / 呼吸
Outline of Final Research Achievements

A three-dimensional motion analysis device and surface electromyography were used to analyze the respiratory movements of patients with Parkinson's disease.
The patients had significantly lower vital capacity and other parameters than healthy subjects, but there was no clear difference between the two in terms of the contribution ratio of chest and abdomen during deep breathing. Regarding intercostal and abdominal muscle activity during deep breathing, myoelectric activity increased significantly toward the end of both inspiratory and expiratory phases in healthy subjects, but not in patients. Although there was no significant difference in respiratory movement patterns during deep breathing, there was a difference in muscle activity, suggesting the possibility that respiratory muscles were not utilized effectively depending on the situation.

Free Research Field

リハビリテーション医学

Academic Significance and Societal Importance of the Research Achievements

パーキンソン病は神経難病の中では患者数が多く、さらに増加傾向にある。その死因として誤嚥性肺炎が多いが、これには嚥下障害に加えて、気道クリアランスの低下が影響する。誤嚥性肺炎予防には肺活量と呼吸筋力を維持することが重要であるが、本研究より呼吸筋の利用が不十分であるとの結果が得られた。今後は効果的な呼吸筋トレーニング法を開発し、早期より応用することが肺合併症予防に有効である可能性が考えられた。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi