• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Study on the Algebraic Structure of Graph Separators

Research Project

  • PDF
Project/Area Number 19K11818
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60010:Theory of informatics-related
Research InstitutionTokyo Denki University (2021-2022)
Gunma University (2019-2020)

Principal Investigator

Yamazaki Koichi  東京電機大学, 理工学部, 教授 (00246662)

Project Period (FY) 2019-04-01 – 2023-03-31
Keywordsグラフ / セパレータ / 束
Outline of Final Research Achievements

The obtained results are as follows: (1) We provided interpretations of Galois connections and closure operators for the lattices formed by the set of separators. (2) By introducing lattice structures that are compatible with k-creatures, a graph structure that has recently gained attention, we demonstrated the inherent equivalence between known results of separators and concept lattices that may appear unrelated at first glance. (3) We examined the recently discovered graph structure called t-critter from the perspective of lattice structures and clarified the differences between k-creatures and t-critters. (4) We explored the mechanism of how t-critters generate separators from a lattice viewpoint and provided examples of their engineering applications.

Free Research Field

計算機科学

Academic Significance and Societal Importance of the Research Achievements

グラフセパレータの研究は、我々の生活や暮らしに間接的ながらも豊かさをもたらしている。例えば、スマートフォンやATM、交通網、インターネットなどのインフラにおいて半導体は不可欠である。またAI技術も我々の暮らしや仕事に浸透してきている。
次世代の半導体では3次元化が研究されており、部品の階層化や分割が問題となっている。また、AIの学習においても、データのクラスタリング(グループ分け)が重要である。これらの問題は、分割・分離、つまりセパレートする問題であり、グラフセパレータの問題として数理モデル化できる。グラフセパレータの知見は、間接的ではあるが、工学的・社会的な問題に対して役立っている。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi