• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development of discrete/continuous fusion algorithm for linear programming problems

Research Project

  • PDF
Project/Area Number 19K11830
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60010:Theory of informatics-related
Research InstitutionKyushu University

Principal Investigator

Kitahara Tomonari  九州大学, 経済学研究院, 教授 (10551260)

Project Period (FY) 2019-04-01 – 2024-03-31
Keywords線形計画問題 / 最小ノルム点問題 / 単体法 / 最急降下規則 / 二次計画問題
Outline of Final Research Achievements

The most significant research results throughout the period are to demonstrate theoretical properties of an algorithm for solving minimum norm point problems and implement it using a numerical computation software and investigate its behavior in detail. The results of this research received high praise and were published in peer-reviewed abstracts at prestigious international conferences in the field and in peer-reviewed journals.
In addition to this research, I have compiled a report on simplex methods using the steepest descent rule for linear programming problems, and am investigating the latest research on simplex methods for quadratic programming problems, which will provide seeds for new researches to pursue.

Free Research Field

数理最適化

Academic Significance and Societal Importance of the Research Achievements

私たちは日々いろいろな意思決定の問題に直面するが、それを数理最適化問題として定式化して解くことにより、効率的な意思決定を行うことができる。線形計画問題は最も基本的な数理最適化問題であり、超大規模な線形計画問題が解けるようになることで、私たちの日常生活に変革をもたらす可能性がある。
この課題では、線形計画問題を解く効率的なアルゴリズムについて研究した。線形計画問題には離散的な側面と連続的な側面があり、それらをうまく組み合わせることで、効率的なアルゴリズムが開発できると考えた。この課題に取り組んだ結果、線形計画問題を含むより広いクラスの問題を解くアルゴリズムを開発し、高い評価を得た。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi