• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

A Search for Quantum-resistant Problems over Finite Noncommutative Group

Research Project

  • PDF
Project/Area Number 19K11956
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60070:Information security-related
Research InstitutionTohoku University

Principal Investigator

SHIZUYA Hiroki  東北大学, データ駆動科学・AI教育研究センター, 教授 (50196383)

Project Period (FY) 2019-04-01 – 2023-03-31
Keywords耐量子問題 / 有限非可換群 / 計算量理論
Outline of Final Research Achievements

Under the context of post quantum cryptography, we have investigated the difficulty of the decomposition problem over finite non-commutative groups (DP, for short), which is not known to be as easy BQP. Let L be the countably infinite set of DP instances that have solutions, and let f be the nondeterministic polynomial-time multivalued function that on input an instance, outputs a solution.
We have shown that L is in the intersection of NP and co-AM, and is random self-reducible.Further, we have found a non-trivial NP-complete set which L directly reduces to w.r.t.the many-one reducibility. We have also shown that f can be deterministic polynomial-time computable unless the underlyig subgroup is carefully chosen in the setting of DP.

Free Research Field

理論計算機科学

Academic Significance and Societal Importance of the Research Achievements

量子計算機で扱えるビット長の伸長は公開鍵系暗号技術の危殆化をもたらすため、すなわち全世界的な情報セキュリティへの脅威となるため、量子チューリング機械モデルでも計算が困難と見られる問題の発掘と、その暗号系への応用が期待されている。すでに格子に関連する問題や、超特異楕円曲線の同種写像に関連する問題などが主流の地位を占め、国際標準も検討されている段階ではあるが、新しい問題が不要となったわけではなく、むしろスペアとして議論を深めておく必要がある。そのための研究活動であり、積み上げた成果でもある。

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi