• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Development of high-performance graph mining methods for graph structured data using various additional information

Research Project

  • PDF
Project/Area Number 19K12102
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionHiroshima City University

Principal Investigator

Suzuki Yusuke  広島市立大学, 情報科学研究科, 助教 (10398464)

Co-Investigator(Kenkyū-buntansha) 内田 智之  広島市立大学, 情報科学研究科, 准教授 (70264934)
正代 隆義  福岡工業大学, 情報工学部, 教授 (50226304)
Project Period (FY) 2019-04-01 – 2023-03-31
Keywordsグラフアルゴリズム / 機械学習 / グラフマイニング / グラフ構造データ
Outline of Final Research Achievements

The purpose of this research is to development high-performance graph mining methods for graph structured data using various additional information.
In this research, we proposed one-variable term tree patterns as tree structured patterns suitable for representing a graph structure data in which the same structure appears repeatedly. And we proposed efficient graph mining algorithms for one-variable term tree patterns. Moreover, we developed graph mining algorithms for graph structured data using a query leaning model or an evolutionary learning method. Furthermore, based on computational learning theory, we considered the PAC learnability of a subclass of graph languages defined by parameterized Formal Graph Systems.

Free Research Field

グラフアルゴリズム

Academic Significance and Societal Importance of the Research Achievements

情報技術の発展に伴い,グラフ構造データは大規模化かつ増大している.これらの大規模なグラフ構造データからのデータマイニングには膨大な計算資源を必要とする.一般的なグラフ構造データに対する効率の良いグラフマイニングアルゴリズムの開発は困難である.
本研究課題では,データの持つ付加情報を用いることで,データの持つ情報を活かしつつ,グラフ構造に制限を加える.これにより,ある種のグラフ構造データに対する効率的なグラフマイニングアルゴリズムを提案した.
本研究成果は,大規模なグラフ構造データからのデータマイニングにおける更なる知識の獲得と計算時間の削減に寄与するものである.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi