2022 Fiscal Year Final Research Report
Ricci solitons, Yamabe solitons and a generalization of minimal submanifolds
Project/Area Number |
19K14534
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Chiba University (2021-2022) Shimane University (2019-2020) |
Principal Investigator |
Maeta Shun 千葉大学, 教育学部, 准教授 (00709644)
|
Project Period (FY) |
2019-04-01 – 2023-03-31
|
Keywords | 山辺ソリトン / コンフォーマルソリトン / リッチ曲率 / ヘッセ多様体 / ヘッセフロー / ヘッセソリトン / 部分多様体 / 双対空間 |
Outline of Final Research Achievements |
I showed the following: 1.Steady or shrinking complete gradient Yamabe solitons with finite total scalar curvature and non-positive Ricci curvature are Ricci flat. 2. I classified 3-dimensional complete gradient Yamabe solitons with divergence-free Cotton tensor. 3. Any conformal soliton on a hypersurface in a Euclidean space arisen from the position vector field is contained in a hyperplane, a conic hypersurface or a hypersphere. 4. I defined a Hesse soliton, that is, a self-similar solution to the Hesse flow on Hessian manifolds and showed that any compact proper Hesse soliton is expanding and any non-trivial compact gradient Hesse soliton is proper. Furthermore, I showed that the dual space of a Hesse-Einstein manifold can be understood as a Hesse soliton.
|
Free Research Field |
幾何学
|
Academic Significance and Societal Importance of the Research Achievements |
幾何学的フローはポアンカレ予想を含むサーストンの幾何化予想解決に用いられた非常に強力な手法であり,その自己相似解は重要な役割を担う.本研究は幾何学的フローの自己相似解を研究し,いくつかの分類定理を与えたことに意義がある.また,情報幾何で用いられるヘッセ多様体上の幾何学的フローに対して,その自己相似解といくつかの分類を与えたことに意義がある.
|