• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Ricci solitons, Yamabe solitons and a generalization of minimal submanifolds

Research Project

  • PDF
Project/Area Number 19K14534
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11020:Geometry-related
Research InstitutionChiba University (2021-2022)
Shimane University (2019-2020)

Principal Investigator

Maeta Shun  千葉大学, 教育学部, 准教授 (00709644)

Project Period (FY) 2019-04-01 – 2023-03-31
Keywords山辺ソリトン / コンフォーマルソリトン / リッチ曲率 / ヘッセ多様体 / ヘッセフロー / ヘッセソリトン / 部分多様体 / 双対空間
Outline of Final Research Achievements

I showed the following:
1.Steady or shrinking complete gradient Yamabe solitons with finite total scalar curvature and non-positive Ricci curvature are Ricci flat. 2. I classified 3-dimensional complete gradient Yamabe solitons with divergence-free Cotton tensor. 3. Any conformal soliton on a hypersurface in a Euclidean space arisen from the position vector field is contained in a hyperplane, a conic hypersurface or a hypersphere. 4. I defined a Hesse soliton, that is, a self-similar solution to the Hesse flow on Hessian manifolds and showed that any compact proper Hesse soliton is expanding and any non-trivial compact gradient Hesse soliton is proper. Furthermore, I showed that the dual space of a Hesse-Einstein manifold can be understood as a Hesse soliton.

Free Research Field

幾何学

Academic Significance and Societal Importance of the Research Achievements

幾何学的フローはポアンカレ予想を含むサーストンの幾何化予想解決に用いられた非常に強力な手法であり,その自己相似解は重要な役割を担う.本研究は幾何学的フローの自己相似解を研究し,いくつかの分類定理を与えたことに意義がある.また,情報幾何で用いられるヘッセ多様体上の幾何学的フローに対して,その自己相似解といくつかの分類を与えたことに意義がある.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi