• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2022 Fiscal Year Final Research Report

Studies on integral representations of GKZ hypergeometric functions

Research Project

  • PDF
Project/Area Number 19K14554
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12010:Basic analysis-related
Research InstitutionKumamoto University (2022)
Kobe University (2019-2021)

Principal Investigator

Matsubara-Heo Saiei-Jaeyeong  熊本大学, 大学院先端科学研究部(理), 准教授 (70834381)

Project Period (FY) 2019-04-01 – 2023-03-31
KeywordsGKZ超幾何系 / 交叉理論 / twisted cohomology / 接続問題 / Feynman積分
Outline of Final Research Achievements

In this project, we study integral representations of the so-called GKZ hypergeometric functions. The goal is to understand its global analysis. Moreover, we also seek applications of GKZ systems to sciences.
As a result, we described a formula of analytic continuation in terms of the secondary fan. We also clarified the combinatorial nature of an invariant that integral representations have ((co)homology intersection number). Moreover, we have developed applications for Feynman integrals in quantum field theory.

Free Research Field

代数解析,特殊函数

Academic Significance and Societal Importance of the Research Achievements

函数の性質を理解するうえで,その函数の満たす線形偏微分方程式系を理解することは重要である.しかし,勝手なホロノミー系を考えては具体的な解析は不可能である.GKZ超幾何系は,線形偏微分方程式系の中で大域的な解析が可能と期待される有力なクラスであるとともに,一般論では捨象されている組み合わせ的構造をもつ魅力的な対象である.本研究により,GKZ系の解析接続,積分表示に関する一般論が進展した.また,これらの成果は場の量子論の研究者からも興味を持たれ,共同研究へと繋がった.

URL: 

Published: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi